direct product, metabelian, soluble, monomial, A-group
Aliases: C22×C32⋊C4, C62⋊2C4, C3⋊S3.3C23, C32⋊2(C22×C4), (C2×C3⋊S3)⋊5C4, C3⋊S3⋊3(C2×C4), (C3×C6)⋊1(C2×C4), (C22×C3⋊S3).5C2, (C2×C3⋊S3).20C22, SmallGroup(144,191)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊S3 — C32⋊C4 — C2×C32⋊C4 — C22×C32⋊C4 |
C32 — C22×C32⋊C4 |
Generators and relations for C22×C32⋊C4
G = < a,b,c,d,e | a2=b2=c3=d3=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ede-1=cd=dc, ece-1=c-1d >
Subgroups: 382 in 86 conjugacy classes, 32 normal (7 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, C23, C32, D6, C2×C6, C22×C4, C3⋊S3, C3⋊S3, C3×C6, C22×S3, C32⋊C4, C2×C3⋊S3, C62, C2×C32⋊C4, C22×C3⋊S3, C22×C32⋊C4
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C32⋊C4, C2×C32⋊C4, C22×C32⋊C4
Character table of C22×C32⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 6D | 6E | 6F | |
size | 1 | 1 | 1 | 1 | 9 | 9 | 9 | 9 | 4 | 4 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | -i | i | -i | i | i | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ10 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | i | -i | i | -i | -i | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ13 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | i | -i | i | -i | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -i | -i | -i | i | -i | i | i | i | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | i | i | i | -i | i | -i | -i | -i | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 4 |
ρ16 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | -i | i | -i | i | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ17 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | -1 | 2 | -1 | -2 | orthogonal lifted from C2×C32⋊C4 |
ρ18 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | -2 | 1 | -2 | orthogonal lifted from C32⋊C4 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | 1 | 2 | -1 | 2 | orthogonal lifted from C2×C32⋊C4 |
ρ20 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -2 | 1 | 2 | orthogonal lifted from C2×C32⋊C4 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | -2 | -1 | 2 | -1 | orthogonal lifted from C2×C32⋊C4 |
ρ22 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 2 | 1 | -2 | -1 | orthogonal lifted from C2×C32⋊C4 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -1 | 2 | -1 | 2 | 1 | orthogonal lifted from C2×C32⋊C4 |
ρ24 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | -2 | 1 | orthogonal lifted from C32⋊C4 |
(1 7)(2 8)(3 6)(4 5)(9 23)(10 24)(11 21)(12 22)(13 19)(14 20)(15 17)(16 18)
(1 5)(2 6)(3 8)(4 7)(9 16)(10 13)(11 14)(12 15)(17 22)(18 23)(19 24)(20 21)
(1 11 9)(2 10 12)(3 19 17)(4 20 18)(5 14 16)(6 13 15)(7 21 23)(8 24 22)
(2 12 10)(3 17 19)(6 15 13)(8 22 24)
(1 2)(3 4)(5 6)(7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,7)(2,8)(3,6)(4,5)(9,23)(10,24)(11,21)(12,22)(13,19)(14,20)(15,17)(16,18), (1,5)(2,6)(3,8)(4,7)(9,16)(10,13)(11,14)(12,15)(17,22)(18,23)(19,24)(20,21), (1,11,9)(2,10,12)(3,19,17)(4,20,18)(5,14,16)(6,13,15)(7,21,23)(8,24,22), (2,12,10)(3,17,19)(6,15,13)(8,22,24), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,7)(2,8)(3,6)(4,5)(9,23)(10,24)(11,21)(12,22)(13,19)(14,20)(15,17)(16,18), (1,5)(2,6)(3,8)(4,7)(9,16)(10,13)(11,14)(12,15)(17,22)(18,23)(19,24)(20,21), (1,11,9)(2,10,12)(3,19,17)(4,20,18)(5,14,16)(6,13,15)(7,21,23)(8,24,22), (2,12,10)(3,17,19)(6,15,13)(8,22,24), (1,2)(3,4)(5,6)(7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,7),(2,8),(3,6),(4,5),(9,23),(10,24),(11,21),(12,22),(13,19),(14,20),(15,17),(16,18)], [(1,5),(2,6),(3,8),(4,7),(9,16),(10,13),(11,14),(12,15),(17,22),(18,23),(19,24),(20,21)], [(1,11,9),(2,10,12),(3,19,17),(4,20,18),(5,14,16),(6,13,15),(7,21,23),(8,24,22)], [(2,12,10),(3,17,19),(6,15,13),(8,22,24)], [(1,2),(3,4),(5,6),(7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,241);
(1 3)(2 4)(5 17)(6 18)(7 19)(8 20)(9 11)(10 12)(13 24)(14 21)(15 22)(16 23)
(1 9)(2 10)(3 11)(4 12)(5 14)(6 15)(7 16)(8 13)(17 21)(18 22)(19 23)(20 24)
(2 6 20)(4 18 8)(10 15 24)(12 22 13)
(1 5 19)(2 6 20)(3 17 7)(4 18 8)(9 14 23)(10 15 24)(11 21 16)(12 22 13)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,3)(2,4)(5,17)(6,18)(7,19)(8,20)(9,11)(10,12)(13,24)(14,21)(15,22)(16,23), (1,9)(2,10)(3,11)(4,12)(5,14)(6,15)(7,16)(8,13)(17,21)(18,22)(19,23)(20,24), (2,6,20)(4,18,8)(10,15,24)(12,22,13), (1,5,19)(2,6,20)(3,17,7)(4,18,8)(9,14,23)(10,15,24)(11,21,16)(12,22,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,3)(2,4)(5,17)(6,18)(7,19)(8,20)(9,11)(10,12)(13,24)(14,21)(15,22)(16,23), (1,9)(2,10)(3,11)(4,12)(5,14)(6,15)(7,16)(8,13)(17,21)(18,22)(19,23)(20,24), (2,6,20)(4,18,8)(10,15,24)(12,22,13), (1,5,19)(2,6,20)(3,17,7)(4,18,8)(9,14,23)(10,15,24)(11,21,16)(12,22,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,3),(2,4),(5,17),(6,18),(7,19),(8,20),(9,11),(10,12),(13,24),(14,21),(15,22),(16,23)], [(1,9),(2,10),(3,11),(4,12),(5,14),(6,15),(7,16),(8,13),(17,21),(18,22),(19,23),(20,24)], [(2,6,20),(4,18,8),(10,15,24),(12,22,13)], [(1,5,19),(2,6,20),(3,17,7),(4,18,8),(9,14,23),(10,15,24),(11,21,16),(12,22,13)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,242);
C22×C32⋊C4 is a maximal subgroup of
C62.D4 C62.Q8 (C6×C12)⋊2C4 C22⋊F9 C62⋊D4 C62⋊Q8
C22×C32⋊C4 is a maximal quotient of C3⋊S3⋊M4(2) (C6×C12)⋊5C4 C62.(C2×C4) C12⋊S3.C4
Matrix representation of C22×C32⋊C4 ►in GL5(𝔽13)
1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 12 | 12 |
1 | 0 | 0 | 0 | 0 |
0 | 12 | 12 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 12 | 12 |
5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
0 | 12 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
G:=sub<GL(5,GF(13))| [1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,1,12],[1,0,0,0,0,0,12,1,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,1,12],[5,0,0,0,0,0,0,0,12,1,0,0,0,0,1,0,12,0,0,0,0,0,12,0,0] >;
C22×C32⋊C4 in GAP, Magma, Sage, TeX
C_2^2\times C_3^2\rtimes C_4
% in TeX
G:=Group("C2^2xC3^2:C4");
// GroupNames label
G:=SmallGroup(144,191);
// by ID
G=gap.SmallGroup(144,191);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,3,48,3364,142,4613,455]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^3=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*d*e^-1=c*d=d*c,e*c*e^-1=c^-1*d>;
// generators/relations
Export